The jamming transition and the marginally jammed solid
نویسندگان
چکیده
When a system jams it undergoes a transition from a flowing to a rigid state. Despite this important change in the dynamics, the internal structure of the system remains disordered in the solid as well as the fluid phase. In this way jamming is very different from crystallization, the other common way in which a fluid solidifies. Jamming is a paradigm for thinking about how many different types of fluids – from molecular liquids to macroscopic granular matter – develop rigidity. Here we review recent work on the jamming transition. We start with perhaps the simplest model of frictionless spheres interacting via repulsive finite-range forces at zero temperature. In this highly-idealized case, the transition has aspects of both firstand second-order transitions. From studies of the normal modes of vibration for the marginally jammed solid, new physics has emerged for how a material can be rigid without having the elastic properties of a normal solid. We first survey the simulation data and theoretical arguments that have been proposed to understand this behavior. We then review work that has systematically gone beyond the ideal model to see whether the scenario developed there is more generally applicable. Annu. Rev. Cond. Mat. Phys. 2010 1 This includes work that examines the effect of non-spherical particles, friction and temperature on the excitations and the dynamics. We briefly touch on recent laboratory experiments that have begun to make contact with simulations and theory.
منابع مشابه
New jamming scenario: from marginal jamming to deep jamming.
We study the properties of jammed packings of frictionless spheres over a wide range of volume fractions. There exists a crossover volume fraction which separates deeply jammed solids from marginally jammed solids. In deeply jammed solids, all the scalings presented in marginally jammed solids are replaced with remarkably different ones with potential independent exponents. Correspondingly, the...
متن کاملNormal modes in model jammed systems in three dimensions.
Vibrational spectra and normal modes of mechanically stable particle packings in three dimensions are analyzed over a range of compressions, from near the jamming transition, where the packings lose their rigidity, to far above it. At high frequency, the normal modes are localized at all compressions. At low frequency, the nature of the modes depends somewhat on compression. At large compressio...
متن کاملGetting into a Proper Jam
The study of jammed systems began as a culinary curiosity in 1727, when the Reverend Stephen Hales studied how peas pack when compressed in an iron pot [1]. Fill a pot with peas and you can run your hand through them, because they can flow out of the way much like a liquid would. But as pressure, and thus the density, is increased, you will find that there is a critical point, above which the p...
متن کاملContinuous or catastrophic solid–liquid transition in jammed systems
Pasty materials encountered in industry and in earth science are intermediate between solids and liquids either in terms of their internal structure (disordered but jammed) or from a mechanical point of view. Our results indicate that the apparent behavior of a particulate system (soils, suspensions, clays, etc.) can range from liquid-like to soil or solid-like depending on the relative importa...
متن کاملJamming transitions in a schematic model of suspension rheology
– We study the steady-state response to applied stress in a simple scalar model of sheared colloids. Our model is based on a schematic (F2) model of the glass transition, with a memory term that depends on both stress and shear rate. For suitable parameters, we find transitions from a fluid to a nonergodic, jammed state, showing zero flow rate in an interval of applied stress. Although the jamm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010